
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3, September 2019

7048

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C5374098319/2019©BEIESP

DOI:10.35940/ijrte.C5374.098319



Abstract: Security is a significant concern in software

development. Risks and errors should be reduced and as much as

possible eliminated. Especially with how the computer and

internet provide numerous technological benefits and are being

optimally utilized in the present times, users have high

expectations when it comes to secure software products. The

development cycle in software design is comprised of a systematic

process wherein security risk assessment should be integrated into

each phase. In order to ensure quality software with a high level

of security, the best practices in risk management should be

implemented from the beginning and should be performed

throughout the process. While developing highly secure software

is a complex task, therefore, it must involve more dedicated

security activities that are usually ignored in traditional SDLC. In

this paper, the nature and phases of secure software development

will be discussed as well as the security risk assessment models

and practices involved in it. This will provide software developers,

programmers, or engineers the awareness on secure software

development cycle which will allow them to plan efficient

strategies and enhance their performance, thus, resulting in

quality and reliable output. In addition, we present a qualitative

study looking at real-life practice employed towards software

security risk. We reflect on how well current risk practices follow

best practice, identify pitfalls, and explore why these occur &

mitigate.

Keywords: Risk Management, Security, Software Development

Cycle, Software Engineering.

I. INTRODUCTION

 In the software development cycle, security is an important

concept. In the future, it may even become more problematic.

A security issue has no easy solution. That is why software

developers must integrate security from the beginning of the

software development process. Throughout the process,

security must be taken into account to make sure that the

software product has optimal security as discussed by [18].

Continuous monitoring and evaluation can lead to early

detection of errors or problems, prompt implementation of

appropriate actions, and most importantly, production of the

most desirable secure software product.

Devanbu and Stubblebine [8] stressed focusing on security

issues at all software development phases and outlined how to

focus on requirements and design processes which are the two

initial developmental levels. Gupta [11] discussed risk

management strategies at the early stages of software

development and claimed that late risk management indirectly

 Revised Manuscript Received on September 15, 2019

Mamdoh Alenezi, College of Computer and Information Science, Prince

Sultan University, Riyadh, Saudi Arabia, malenezi@psu.edu.sa

Sadiq Almuairfi, Information Technology Center, Prince Sultan

University, Riyadh, Saudi Arabia. salmuairfi@psu.edu.sa

poses greater threats to secure software development.

Addressing, analyzing, and mitigating security risks will

result in a variety of advantages for software development

projects. It will enable developing truly secure systems,

monitoring and protecting critical assets, supporting efficient

security decision-making policies, building practical security

policies, and providing insightful data for future estimation

and even more.

 For software systems, software security is an important

requirement. A software application is effective if it is written

to attain the intended objective and to make sure that it allows

a satisfying experience for the user in an entirely safe

environment.

 Oftentimes, writing applications that cover all the necessary

criteria for it to be successful can be very challenging. The

key question is” How can a software have the resilience to

flaws in security?” Engineers often have less awareness of

security approaches that lead to functional software, but

particularly susceptible to security threats. And because the

development approach has various flaws, security issues will

possibly be encountered when the software’s functional role is

given emphasis. This is why engineers revisit the work after

the completion of the development process in an attempt of

improving security aspects [4].

 In the software world, it is essential to understand the

security risks associated with the software system you are

building [1]. Software security is a philosophy that includes

but not limited to concepts, checklists, tools, processes, and

methods [17]. These are important to architect and design,

code and construct, and verify and test software systems.

Basic security goals such as confidentiality, integrity, and

availability, together known as the CIA triad, along with

security risks controlling and monitoring activities and

concepts such as assets, threats, and vulnerabilities [2]. In

addition, even though there are some security measures are in

place, there are still risks a software might face that need to be

addressed [6].

Risk management systems have played an essential role in the

software industry. It involves strategic practices in software

engineering that would lead to an efficient software

development process. These practices enable a disciplined

environment for effective decision-making through the

assessment of existing and potential problems in software

development as explained by [20].

 The de facto way of handling risks is risk management [2].

Security Risks in the Software Development

Lifecycle

 Mamdouh Alenezi, Sadiq Almuairfi

Security Risks in the Software Development Lifecycle

7049

Published By:

Blue Eyes Intelligence Engineering &

Sciences Publication

Retrieval Number: C5374098319/2019©BEIESP

DOI:10.35940/ijrte.C5374.098319

 Risk management does not eliminate risks but it is a

systematic way of finding, analyzing, mitigating, and

handling risks. Its main objective is to identify probable

issues before they occur in order to handle them in an efficient

professional way. It should begin as early as possible and

continue throughout the total life cycle of the project [1].

Boehm [6] stated in his masterpiece about risk management

that identifying and addressing risks early in the development

stages would help in reducing the software project cost. This

is applicable also to security risks. Risk management is a

continuous process that spans the whole software

development cycle. “Fig. 1” shows the Boehm risk

management process.

As evidence, the above research gaps remain in addressing the

human aspects of software security risks and stage level risk

assessment. Our paper takes a holistic perspective to explore

real-life security risk practices, an important step in

improving the current situation.

II. RISKS TYPES AND CLASSIFICATION

 Risk is considered a future uncertain event with a certain

probability of happening and impact or loss. Risk is the

expectation of the loss or damage. It is very essential to

quantify the level of uncertainty and the degree of loss

associated with each risk. Risk is the factor which should be

identified before going through software security. Risks can

be broadly divided into two categories which are proactive

risks and reactive risks. Proactive risks are the

pre-assumptions of risks are to occur in the future. Reactive

risks are when there any problem occurs after deployment of

software.

Fig. 1. Boeh’s Risk Management Process.

Secure software is a need of today life of the internet, the

software is secure when its risks are identified earlier and

managed. The identification, mitigation, and monitoring of

risk is the key factor of secure software.

Risk management is the process of identifying, addressing,

and eliminating the risks before they can damage the project.

It identifies software risks and plans to avoid risks and

minimize their effects if they occur. All risks cannot be

avoided but by performing risk management, we can attempt

to ensure that the risks are minimized and managed [15].

 Any software development project is usually facing

unforeseen issues, which may raise risks within the project

development. Controlling these risks arise from both the

 technical and non-technical development is crucial to arrive

at a successful project. Karim et al. [14] outlined that in

recent studies, it has been discovered that various

methodologies in software development do not

comprehensively constitute methods for the incorporation of

information security into the SDLC. Foreseeably, several

software products that undergo live testing are found to have a

vulnerability to threats and have a failure in providing a safe

environment for clients and users. This is likely caused by the

inadequacy of systematic measures including frameworks,

procedures, or reviews.

 All software has been facing threats from many possible

malicious adversaries which have increased every day.

Threatened software involves complex telecommunications,

accessibility of power systems over the internet, copy

protection mechanisms on commodity software, and personal

computers running internet-aware applications. These and

other threats can significantly challenge software engineers

who are responsible for activities in risk management,

particularly in designing security measures. Many

applications are developed without taking into consideration

security services including access control, integrity,

confidentiality, and non-repudiation as mentioned in [14].

 The risks influences can be external or internal to the

company. Therefore, risk can be classified into systematic

and unsystematic as explained in [7]. Systematic risk refers

to risks caused by external factors. Hacking, Denial of

services, virus, fire, and power loss are sources of systematic

risk. Whereas, unsystematic risk is the portion of total risk

that is unique to the enterprise. Data loss or misuse, human

error, application error, and inside attack can be examples for

unsystematic risk.

III. RISK ASSESSMENT AND MITIGATION

 Risk assessment merges between vulnerability analysis and

threat impact evaluation to reach an overall conclusion about

the risk level.

 Risk assessment involved in finding risks and determining

which is considered harmful or not. In addition, it documents

the findings, implementations, regular updates, and reviews.

Because of the nature of software, the occurrence of a number

of risks has become a key concern in the industry. This is

why it is important to have efficient strategies for risk

management in the software development process. Pandey et

al [4] outlined that the occurrence of risk is inevitable;

therefore, risk mitigation strategies have been implemented

since the past two decades.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3, September 2019

7050

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C5374098319/2019©BEIESP

DOI:10.35940/ijrte.C5374.098319

Thus, Mitigation is one of the actions involved in software

risk management.

 Quality assurance involves management of essential data

needed to evaluate product quality. The process begins with

planning and carrying out reviews and inspection. This is an

ongoing process throughout the software development cycle

wherein the software being developed is routinely checked

ensuring that it has met the necessary quality measures.

 A procedure called” Software Quality” is used for the

assessment, evaluation, and improvement of software

performance. It is defined as the extent by which the software

has met the requirements for portability, maintainability,

reliability as contrasted with interface, functional, and

performance requirements that are fulfilled as an output of

software engineering. It is a planned and systematic approach

in evaluating quality, standards, procedures, and processes of

the software product [13]. Since security is considered a

quality attribute, security risk has to be investigated in the

context of software risk. In the security world, incidents are

measured against assets, threats, and vulnerabilities [9] as

shown in “Fig.2”.

Fig. 2. Security Risk and Related Elements.

IV. SECURE SOFTWARE DEVELOPMENT LIFE

CYCLE (SSDLC)

 Software Development Life Cycle is a significant concept

utilized in software engineering, particularly in describing a

method for planning, generating, coding, testing, and

implementation of a user requirement specification. It

involves a range of software and hardware configurations. It

is a step by step procedure for the creation of quality software.

It entails several phases that are followed accordingly and are

important for software engineers including analysis, planning,

coding, design, testing, and implementation. The software

development lifecycle consists of many phases. Generally

speaking, each software process consists of at least five main

phases: Requirements, Architecture and Design,

Implementation, Verification, and Release & Maintenance.

“Fig.3” shows these phases with practical things that can be

done in each phase to make the software more secure.

Fig. 3. Typical Software Development Lifecycle.

 Software Development Life Cycle (SDLC) needs to

consider security in each phase to avoid complexity and

problems.

Karim et al [14] illustrate that security is essential in

providing authentication, integrity, and availability in SDLC.

Since mistakes in software security are common and there

have been increasing threats, it is necessary that security is

considered in the early stage of the software development

cycle and that security principles are applied as a standard

element of the cycle. Adopting practices that cause reduction

of software defects leading to minimization of potential risk

due to lack of attention to security throughout the

development process.

A. Pre-requirements Phase

 Security actions are done at this phase establish the base of

all the actions starting from requirements until testing and

maintenance phase. The following tasks are performed

during this phase:

1) Security Training and Awareness

Many firms do not give enough attention to the importance of

security and how to improve it. If higher

management does not support and value security, then they

will not support and spend on security activities that are

essential to achieve it. Security training can be classified into

two categories general training and specific training as

explained by [10]. General training is for the company as a

whole. The goal is to create security awareness in the

company’s culture and let everyone starts thinking about

security in their projects, task, and actions. Specific training

is limited for the project or dedicated team only. It varies

from team to team. The goal of specific training is to identify

the flaws; threats associated with them, and identify security

measures that should be taken to secure software from these

threats. General and specific training build a security culture

within the organization with enough seriousness in tasks and

activities [10]. Security training is successful if each

individual is aware of security importance and knows what

role he or she has to play towards the development of secure

software.

2) Develop a framework for Risk Management

The goal is to identify risk elements early in the

development cycle and develop some strategies to resolve

risks findings. Set down some agenda to resolve new risk

items that are highlighted [16]. Risk management

framework should be implemented in the beginning, so that

top management and stockholder get educated about the

risks and their possible impact. Risk management

framework should work as a reminder of security

importance over a period of time.

B. Requirements Phase

Systematic measures such as frameworks and procedures

can help project managers and developers in ensuring that

security processes are being followed consistently in every

part of the development process with accordance with the

set of rules.

Security Risks in the Software Development Lifecycle

7051

Published By:

Blue Eyes Intelligence Engineering &

Sciences Publication

Retrieval Number: C5374098319/2019©BEIESP

DOI:10.35940/ijrte.C5374.098319

The requirements phase involves the collection of all user

requirements done by software engineers in order to proceed

with software development. Discussions are held by the

software development team with the users to address issues

and try to bring out all necessary information on their

requirements. The requirements are gathered from the user,

functional requirements, and system requirements.

Collection of requirements are done through studying the

existing software and system, conducting user interviews,

looking at the database, or using questionnaires to collect

answers. It is important to carefully perform this phase as all

collected information can affect software quality.

On the other hand, ”Develop Misuse Cases” is usually

performed during the requirement phase. Where, the focus is

on ”what” and not on ”how” during requirement gathering.

The next step is to handle ”how” on an abstract level without

going into the design and implementation details when

functional, non-functional and security requirements are

identified, gathered, analyzed, and documented. Security

requirements describe what the system should not do, while

functional requirements describe what the system should do

[10]. Use cases handle functional requirements whereas

misuse cases handle eliciting security requirements and help

in understanding possible attacks, actors, relationship with

allowed functionalities, estimating the amount of loss, and

determining system’s behavior before and after the attacks.

C. Architecture Phase

 Software architecture entails a discipline in the creation and

the documentation of high-level structure in a software

system. The practice of designing software is similar and

comparable to a building’s architecture. Documentation of

software ensures communication among stakeholders,

facilitates early decisions regarding high-level design, and

enables reuse of design elements between projects as

mentioned in [12]. The best architecture always involves

having sufficient software knowledge and skills as well as the

implementation of this knowledge and skills in the software

development cycle.

 Software architects perform several activities. They usually

work with project managers, discuss architecturally

significant requirements with stakeholders, come up with

software architecture, evaluate, and communicate the

architecture with the rest of the team. There are four core

activities in software architecture design. These core

architecture activities are performed iteratively and at

different stages of the initial software development life cycle,

as well as over the evolution of a system.

 Architectural Analysis is about understanding the

surrounding environment where the system is going to

operate and determining what is needed for it to operate.

The input or requirements to the analysis activity can

come from any number of stakeholders and include items

such as:

 (Functional requirements) or what the system will do

when it is functional.

 (Non-Functional) or quality attributes such as reliability,

efficiency, maintainability, performance, and security.

 Business requirements and environmental contexts of a

system that may change over time, such as legal, social,

financial, competitive, and technology concerns.

 Architectural Synthesis is where the actual creation of the

architecture. The input is requirements from the analysis

stage, the current state is creating the architecture and then

move to the next stage where the created architecture is

evaluated and improved.

 Architecture Evaluation is determining the health and wealth

of the created architecture. The evaluation decides about

architecture decisions and how they are achieving or not

achieving the desired requirements. Some of the available

software architecture evaluation techniques include the

Architecture Tradeoff Analysis Method (ATAM).

 Architecture Evolution [3] is maintaining and adapting

existing software architecture to meet new requirements and

environmental changes. Some of these new requirements

and technology advancement can cause some changes at the

architecture level. As such, architecture evolution is

concerned with adding new functionality as well as

maintaining existing functionality and system behavior.

D. Design Phase

Today, most researches are emphasizing the idea of

addressing the security issues at the initial phase of the

software development life cycle. The early detection and

correction of security risks are said to help deal with the

prevalent security aspects in software development [22].

Therefore, the recognition of different security risks at the

design phase will help avoid the loopholes that may pose a

threat to the security of the system in the future. If the design

itself is prepared in such a way that the security-related risks

are evaluated, then it may help in the reduction of time and

cost that is spent on system security software. Detecting and

rectifying bugs after development is found to be 100 times

critical as compared to considering them at the design phase.

Therefore, it is suggested to address the security-related risks

at early stages of SDLC.

 There are rules in designing software which can be used in

building secure frameworks, in the improvement of

programming frameworks’ security, and in handling issues

that prevent secure software advancement.

 The Design phase involves bringing down the entire

knowledge of requirements and analysis for software design.

Various designs such as object-oriented design and

functional design are available. Several tools such as data

dictionaries, entity-relationship diagram, and flow diagram

can be utilized for designing. All information gathered is

inputted in this phase as discussed by [15].

E. Coding (Implementation) Phase

 In the coding phase, software development starts with

written program code with the use of appropriate

programming language as well as the efficient development

of executable programs that are error-free.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3, September 2019

7052

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C5374098319/2019©BEIESP

DOI:10.35940/ijrte.C5374.098319

 The integration of software with the databases, libraries,

and other programs may be necessary. In order to develop a

quality software product, the software development team

must possess expert level programming skills.

The implementation or coding of the software project

follows mostly regular software engineering best practices.

The code should be checked into a source code repository

using version control such as Git or svn [22]. The add-ons

onto the version control can make magical help. They can

statically analyze the code, identify security concerns in the

code and more. A strict coding standard should define and

forced. Each environment and program language need

different requirements. Some of them require more focus on

exception handling or memory management.

 Newly added or modified source code should go through a

formal code review process. Code review can be manual or

automated. Automated code review is now part of the

continuous integration process where any addition or

modification of the code goes through several steps that

make sure the code is up to the standards and does not break

existing code [5]. The code review process must be

integrated into the development process, working naturally

alongside development. There are different available tools

that can help in that regard such as GitHub, Gerrit, and many

others. For a new project, it is important to evaluate the

features of the different systems and to choose the one that

best integrates into the development process [22].

F. Testing (Verification) Phase

 Software testing is an essential part of software

development. Each new commit and release must be

thoroughly tested for functionality and security. Testing

methodologies such as incorporation testing or unit testing

are utilized for testing use of the created software as per [14].

This is to facilitate the removal of mistakes or errors ensuring

that the software product has good quality. Testing experts

conduct testing at different levels of code including program

testing, object-oriented testing, module testing, and product

testing at dynamic and static levels.

 Security testing is very different from functional testing

because functional testing focuses on achieving functional

criteria whereas security testing handles an abstract property

which is not inherently testable. Crashing test cases indicate

some bugs but there is no guarantee that a bug will cause a

crash.

Automatic security testing based on fuzz testing, penetration

testing, symbolic execution, or formal verification tests

security aspects of the project, increasing the probability of a

crash during testing as explained in [22].

 A dedicated security response team is essential to answer

to any threats and discovered vulnerabilities. They are the

primary contact for any flaw or vulnerability and will triage

the available resources to prioritize how to respond to them

including changes to in the environment because of the

software evolution.

G. Release and Maintenance Phase

 The last stage of a Software Development Lifecycle process

is its deployment and maintenance. Here a lifecycle

maintenance approach is implied which tends to define how

the various releases and changes to the software will be

catered and how it will be used to meet different business

objectives a developer or two may have to permanently

implied towards the maintenance of that product and to cater

to various client’s needs and requirements.

 This phase may also embark the actual installation of the

software product with all its components and database on the

production environment. This usually may be struck with

various kinds of complexities that come with this sort of

integration Payer [22] mentioned that an update and

patching strategy defines how to react to said flaws, how to

develop patches, and how to distribute new versions of

software to the users. Developing a mechanism to securely

update the infrastructure is challenging. The component

responsible for security updates must be designed in a way to

frequently check for new updates while considering the load

on the update servers. Updates must be verified and checked

for correctness before they are installed. During the

operation and maintenance phase, the software is further

optimized, and new functionalities and capabilities are added

to it with time.

V. RISKS MODELS

Several risk models have been developed in order to improve

the security level of SDLC. Neves and Silva [19] discussed

that for software projects, analyzing risk-related information

can lead to an improvement in the decision-making process

of managers.

 Based on the obtained information, proper risk management

can then be implemented in software development.

Identifying the several existing and potential risk factors will

greatly contribute to the reduction and elimination of the

likelihood of problems.

 The risk management in software development cycle

involves the use of various models. These models are the

Waterfall, Spiral, V-Model, and Multilevel Security

Spiral (MSS). The Waterfall model is a development

methodology that involves a continuous process wherein the

result of a certain development phase becomes the input for

the other as shown in [21]. The Spiral model is characterized

as a model that is driven by risk and is used in guiding the

process of building systems. The V-Model, also known as

the Vee-Model, is used in describing the series of steps in the

development cycle. The left part of the ”V” is a

representation of the decomposition of requirements and the

formation of system specifications.

The right side of the ”V” is a representation of the integration

and the verification of parts. The ”V” shape is an

illustration of how every design phase is associated with a

corresponding counterpart during the testing phase as

explained in [23].

 Waterfall and Spiral models are commonly used models in

the development of the system. The principal focus of

security spiral is the

identification of security risks

and management of those risks.

Security Risks in the Software Development Lifecycle

7053

Published By:

Blue Eyes Intelligence Engineering &

Sciences Publication

Retrieval Number: C5374098319/2019©BEIESP

DOI:10.35940/ijrte.C5374.098319

The spiral model is an organized approach for software

development and based on risk perception. In Multilevel

Security Spiral (MSS), security is considered from the very

start of the software development cycle. Each cycle of the

MSS begins with identifying the objectives, limitations, and

alternatives possible for developing the software. After the

identification of risk, a strategy is then developed for the

resolution of the risks and uncertainties. After resolving the

risks, the next step of creating the software is then performed.

While taking into consideration the risks, the programmer

must make necessary revisions after every step.

 Usually, it is hard to know what to look for and where to

start. Software security models are here to help shed some

light on what is needed.

These models can broadly be categorized as descriptive and

prescriptive models. Descriptive models can be used to

determine how a company is doing compared to others.

Prescriptive models are models that describe what one

should do. An example of a descriptive model is Building

Security in Maturity Model (BSIMM) which is a model

that describes how the state of software security is at the

moment of the study. BSIMM can help in the risk

management process by explaining security measures other

organizations have. From this, the organization can find

security measures most interesting for them. “Fig. 4” shows

the Building Security in Maturity Model (BSIMM).

Fig. 4. . Building Security in Maturity Model (BSIMM).

 An example of a prescriptive model is The Open Software

Assurance Maturity Model (SAMM)which is an open

framework developed by the Open Web Application

Security Project (OWASP) to help organizations formulate

and implement a strategy for software security that is tailored

to the specific risks facing the organization. OpenSAMM

offers a roadmap and well-defined maturity model for secure

software development and deployment, along with useful

tools for self-assessment and planning. SAMM is composed

of 12 security practices, in four different business functions,

as shown in “Fig.5”.

Fig. 5. The structure of SAMM, consisting of 12 security

practices in four business functions.

VI. BEST PRACTICE AND EXAMPLE OF RISK

CONTROLS DURING THE SOFTWARE LIFECYCLE

The most important step of risk management is the risk

controls which comes after risk identification, risk analysis,

and risk prioritization. Wilson et al [24] found that software

development involves groups of people working on

computational problems, traditional laboratory, and more

daily operations to develop new algorithms, manage and

analyze a large number of data, combine different datasets to

evaluate computational tasks and problems. There are best

practices in software development which entail

comprehensive research and experience as its solid

foundations. These help in writing more maintainable and

reliable code with lesser effort.

Best practices and examples of risk controls include:

1) Writing programs for people rather than for machines

wherein:

 a program must not require the users to take in

too many facts at once

 names are meaningful, distinctive, and

consistent

 the formatting and style of the code are

consistent

2) Letting the computer do the job by:

 Making the computer able to repeat tasks

 Saving in a file the recent commands for reuse

 Automating workflows through the use of a

build tool.

3) Making incremental changes through:

 Continuous feedback and correction of course

while working in small steps

 The use of a version control system

 Putting in version control all that have been

manually created

4) Not repeating oneself or others in which:

 The system must have a single authoritative

representation for each data

 Codes are modularized instead of being copied

and pasted.

 Codes are reused rather than being rewritten

5) Planning for mistakes by:

 Adding assurance that how programs operate

will be checked

 Utilizing an existing and reliable testing unit

 Conducting test activities for bugs

 Using a symbolic debugger

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3, September 2019

7054

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C5374098319/2019©BEIESP

DOI:10.35940/ijrte.C5374.098319

6) Making effective use of software only once it is proven

that it functions correctly by:

 Identifying bottlenecks through the use of a

profiler

 Writing code in the best language level possible

7) Documenting the purpose and design rather than the

mechanics wherein:

 Interfaces and reasons are recorded

 Code is refactored to provide an explanation of

how it works

 The documentation is embedded for a piece of

software

8) Collaborating through:

 The use of pre-merge code reviews

 The use of pair programming when distinctly

tricky problems are tackled and when someone

new is being brought up to speed.

 The use of a problem tracking tool

Building secure software through the incorporation of

security best practices can result in good practices in

software engineering. To efficiently deal with existing

security measures in various development projects, the

incorporation of security-minded thinking should be

considered throughout the process of development. This can

reduce the risk of lacking in necessary security requirements

or committing critical faults in software design. Through

utilizing this strategy, early discovery of problems can be

possible. Discovering problems at the end of the process will

lead to difficulty in handling them and can cost a lot when

fixing them During the Software Development Cycle,

vulnerabilities linked to the system can be lessened to a

minimum level of security is dealt with as a continuing

process [14].

Since the software is oftentimes utilized for more than one

type of project and is frequently reused, computation of

errors can have a disproportionate effect on the process. This

kind of cascading impact leads to various prominent

retractions if a mistake from the code of another group was

not detected until after the publication. Thus, awareness of

the best practices is necessary for the improvement of the

approaches and for the evaluation of others’ computational

work [24].

VII. CONCLUSION

In summary, considering that security plays a crucial role in

every software product, it is necessary to utilize best

practices throughout the software development cycle. Risk

assessment should be conducted starting from the beginning

of the process and should be performed as an ongoing

procedure integrated into each phase of the cycle. Risk

management should be efficiently performed when issues or

errors are detected. This enables meeting all the

requirements for software development ensuring secure

software, and in turn, will satisfy clients and users.

REFERENCES

1. Ibrahim Abunadi and Mamdouh Alenezi. An empirical investigation of

security vulnerabilities within web applications. Journal of Universal

Computer Science, 22(4):537–551, 2016.

2. Thamer Al Hamed and Mamdouh Alenezi. Business continuity

management & disaster recovery capabilities in Saudi Arabia ICT

businesses. International Journal of Hybrid Information Technology,

9(11):99–126, 2016.

3. Mamdouh Alenezi and Fakhry Khellah. Architectural stability evolution

in open-source systems. In Proceedings of The International

Conference on Engineering & MIS 2015, page 17. ACM, 2015.

4. Md Tarique Jamal Ansari, Dhirendra Pandey, and Mamdouh

Alenezi. Store: Security threat oriented requirements engineering

methodology. Journal of King Saud University-Computer and

Information Sciences, 2018.

5. Hala Assal and Sonia Chiasson. Security in the software development

lifecycle. In the Fourteenth Symposium on Usable Privacy and Security

({SOUPS} 2018), pages 281–296, 2018.

6. Barry W. Boehm. Software risk management: principles and practices.

IEEE Software,8(1):32–41, 1991.

7. Abdullah Al Murad Chowdhury and Shamsul Arefeen. Software risk

management: importance and practices. International Journal of

Computer and Information Technology (IJCIT), pages 2078–5828,

2011.

8. Premkumar T Devanbu and Stuart Stubblebine. Software engineering

for security: a roadmap. In Proceedings of the Conference on the Future

of Software Engineering, pages 227–239. ACM, 2000.

9. Nan Feng, Harry Jiannan Wang, and Minqiang Li. A security risk

analysis model for information systems: Causal relationships of risk

factors and vulnerability propagation analysis. Information sciences,

256:57–73, 2014.

10. Radek Fujdiak, Petr Mlynek, Pavel Mrnustik, Maros Barabas, Petr

Blazek, Filip Borcik, and Jiri Misurec. Managing the secure software

development. In 2019 10th IFIP International Conference on New

Technologies, Mobility and Security (NTMS), pages1–4. IEEE, 2019.

11. Sandeep Gupta. A proactive approach to information security.

Technical report, 2003. Also available as

https://www.giac.org/paper/gsec/3532/

proactive-approach-information-security/105749.

12. Mohammad Imran, Abdulrahman A Alghamdi, and Bilal Ahmad.

Software engineering: Architecture, design and frameworks.

International Journal of Computer Science and Mobile Computing,

5(3):801–815, 2016.

13. Shareeful Islam. Software development risk management model: a

goal driven approach. In Proceedings of the doctoral symposium for

ESEC/FSE on Doctoral Symposium, pages 5–8. ACM, 2009.

14. Nor Shahriza Abdul Karim, Arwa Albuolayan, Tanzila Saba, and

Amjad Rehman.The practice of secure software development in SDLC:

An investigation through existing model and a case study. Security and

Communication Networks, 9(18):5333–5345, 2016.

15. Jasleen Kaur, Alka Agrawal, and Raees Ahmad Khan. Major software

security risks at design phase. ICIC Express Letters, 12(11):1155–1162,

2018.

16. Armin Lunkeit and Hartmut Pohl. Model-based security engineering for

secure systems development. In ARCS Workshop 2018; 31th

International Conference on Architecture of Computing Systems, pages

1–10. VDE, 2018.

17. Gary McGraw. Four software security findings. Computer,

49(1):84–87, 2016

18. Hanif Mohaddes Deylami, Iman Ardekani, Ravie Chandren

Muniyandi, and Hossein Sarrafzadeh. Effects of software security on

software development life cycle and related security issues.

International Journal of Computational Intelligence and Information

Security.

19. Sandra Miranda Neves and Carlos Eduardo Sanches da Silva. Risk

management applied to software development projects in incubated

technology-based companies: literature review, classification, and

analysis. Gest˜ao & Produc˜ao, 23(4):798–814, 2016.

20. Maruf Pasha, Ghazia Qaiser, and Urooj Pasha. A critical analysis of

software risk management techniques in large scale systems. IEEE

Access, 6:12412–12424, 2018.

http://www.giac.org/paper/gsec/3532/
http://www.giac.org/paper/gsec/3532/

Security Risks in the Software Development Lifecycle

7055

Published By:

Blue Eyes Intelligence Engineering &

Sciences Publication

Retrieval Number: C5374098319/2019©BEIESP

DOI:10.35940/ijrte.C5374.098319

21. Rupali Pravinkumar Pawar. A comparative study of agile software

development methodology and traditional waterfall model. IOSR

Journal of Computer Engineering (IOSR-JCE), 2(2):1–8, 2015.

22. Mathias Payer. Software Security: Principles, Policies, and

Protection. HexHive Books, 0.35 edition, April 2019.

23. Giuditta Pezzotta, Sergio Cavalieri, and Paolo Gaiardelli. A spiral

process model to engineer a product service system: an explorative

analysis through case studies. CIRP Journal of Manufacturing Science

and Technology, 5(3):214–225, 2012.

24. Greg Wilson, Dhavide A Aruliah, C Titus Brown, Neil P Chue

Hong, Matt Davis, Richard T Guy, Steven HD Haddock, Kathryn D

Huff, Ian M Mitchell, Mark D Plumb- ley, et al. Best practices for

scientific computing. PLoS biology, 12(1):e1001745, 2014.

AUTHORS PROFILE

Dr. Mamdouh Alenezi is currently the Dean of

Educational Services at Prince Sultan University. Dr.

Alenezi received his MS and Ph.D. degrees from DePaul

University and North Dakota State University in 2011 and

2014, respectively. He has extensive experience in data

mining and machine learning where he applied several data

mining techniques to solve several Software Engineering

problems. He conducted several research areas and development of

predictive models using machine learning to predict fault-prone classes,

comprehend source code, and predict the appropriate developer to be

assigned to a new bug.

Dr Sadiq Almuairfi is currently an E-Service director

and a researcher at Security Engineering Lab in Prince

Sultan University, Riyadh, Saudi Arabia. He received

his PhD in Cyber-security from La Trobe University,

Melbourne, Australia, in 2014 and his Master degree

in Information Management from King Abdulaziz

University, Jeddah, Saudi Arabia, in 2005 and his

Bachelor degree in Computer Engineering from

KFUPM, Dhahran, Saudi Arabia in 2001. His research interests include

Cyber-security, Network Security, E-Commerce Security .

